Intrinsic plasticity in autonomous recurrent neural networks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Adaptation in Autonomous Recurrent Neural Networks

A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, ...

متن کامل

Intrinsic Plasticity in Random Recurrent Networks

ii iii Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

متن کامل

Random recurrent neural networks for autonomous system

In this article, we stress the need for using dy-namical systems properties in autonomous architecture design. We rst study the dynamics of random recurrent neural networks (RRNN). Such systems are known to spontaneously exhibits various dynamical regimes, as they always tries to remain on an attractor, thus achieving stable dy-namical behaviors. Second, we try to characterize the adaptive prop...

متن کامل

Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypo...

متن کامل

Title: Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks Abbreviated title: HIP in biological recurrent neural networks

Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher-order cognitive processes rely on complex neural dynamics. The hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2010

ISSN: 1662-5188

DOI: 10.3389/conf.fncom.2010.51.00059